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ABSTRACT 

In 1999, the Taiwan Highway Bureau imported ARAN (Automatic Road 

Analyzer), a specially equipped car that provides speedy and accurate pavement 

inspection, and outputs the measured pavement roughness as IRI (International 

Roughness Index). Since then, the traditional road-inspector visual inspection 

performed at network level pavement inspection had the tendency to be replaced by 

automatic inspection devices. Engineers also have gradually started to pay attention to 

IRI index. However, some pavement distress deterioration conditions are unique to 

Taiwan due to the island climate and special characteristics of the traffic and axle load. 

In this paper, analysis of the relationship between IRI and pavement distresses is 

performed based on a back-propagation neural network methodology to evaluate the 

applicability of IRI to be treated as a critical representation index of pavement 

performance. Moreover, the effects of distinct distress types and their extent on IRI 

can also be analyzed to infer roadwork benefit. 

Based on a back-propagation neural network we construct in this research, IRI 

may be predicted accurately from distress rating results obtained from pavement 

video images, which is recorded by a camera mounted on ARAN. The correlation 

coefficient between IRI and the distress variables reaches 0.944, which shows that IRI 

may completely reflect pavement distress conditions. Thus, it is feasible to use IRI as 

a pavement performance index. Using IRI may simplify inspection works. Obviously, 

different distress types differently impact IRI. We find the definite effect of each 

distress type on IRI by sensitivity analysis. Thus, we may infer the improvement in 

the IRI resulted from certain extent or amount of repair for each distress. However, 

even if local road authories are not equipped with automatic inspection devices, an 

accurate IRI is still obtainable via the present visual inspection method based on the 

back-propagation neural network we propose. Then, based on this IRI further 

optimization analysis can proceed. [1]  

 

 

Key Words: distress, international roughness index, back-propagation neural network, 

visual inspection  
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INTRODUCTION 

Pavement roughness is a characteristic which may be measured by various 

automatic multifunctional pavement measuring devices, and which may be expressed 

using the International Roughness Index (IRI), an international parameter used to 

measure pavement roughness conditions. It differs from RN, PSR and other common 

roughness indexes that depend on subjective human experts’ evaluations. Besides, IRI 

is more convenient than any other index created by visual evaluation processes, such 

as PCI, etc.[2] This research examines the efficacy of the IRI pavement condition 

index to confirm that it not only conforms to the international trends, but avoids 

effects of unreliable and inconsistent results by personal factors in determining index 

value. 

Pavement surface roughness is a major concern associated with driving quality. 

[3] Since pavement roughness causes an increase in vertical stress received by 

pavement and the aggravation of pavement fatigue, pavement roughness certainly 

accelerates pavement distress deterioration. Furthermore, pavement roughness 

indicates pavement surface deformation, which may affect pavement drainage, drive 

safety, etcetera. [4] Any pavement distresses will also result in a deterioration of the 

pavement roughness index value. Thus, the above shows that pavement distress and 

pavement roughness have a mutually causal relationship, affecting one another in both 

directions. 

Although both IRI and specific distress types should be considered in 

determining road work activities, and performing more "near project level" analysis 

cannot only rely on the IRI data collection, data collection tasks of enormous road 

networks consume substantial cost of money and time. If we can reinforce the 

concepts that IRI may completely reflect pavement distress conditions and that there 

is a relationship between IRI and certain pavement distresses, IRI data will become 

more valuable information for ministry of transportation to analyze and evaluate the 

overall network situation. Moreover, it becomes more reasonable to only rely on the 

IRI to determine which road section among network may needs maintenance or 

improvement when it is difficult to collect distress measurement and imaging under 

limited resources conditions. 
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BACKGOUND 

Pavement Deterioration  

A pavement maintenance system should have the ability to perform present 

pavement performance evaluation and future performance prediction. [5] Pavement 

performance is determined by both distress degree and distress extent. To obtain a 

long-term pavement deterioration prediction model, a detection model of pavement 

deterioration starting from when it first provides service to the time it begins 

deterioration, as well as the annual deterioration condition during deterioration, 

should be established. Most time-based prediction models depend on annual structure 

numbers, annual equivalent standard axles, deflection resilient modulus, pavement 

thickness, crack level before repair, and climatic factors. After establishment of a 

deterioration model of each distress type, the effects of the each crack type to IRI are 

created, and then the deterioration model of IRI is as follows: [6] 

 

∆IRI = Kgp[∆IRIs + ∆IRIc + ∆IRIr + ∆IRIt] + ∆IRIe 

∆IRI: total incremental change in IRI during the analysis year  

∆IRIe: incremental change in IRI due to environment during the analysis year 

∆IRIs: incremental change in IRI due to structure deterioration during the analysis 

year  

∆IRIc: incremental change in IRI due to cracking during the analysis year  

∆IRIr: incremental change in IRI due to rutting during the analysis year  

∆IRIt: incremental change in IRI due to potholing during the analysis year 

Kgp: calibration factor 

 

While a deterioration prediction model of IRI may be constructed based on 

long-term data measured from actual road sections (not our main topic), the modeling 

procedures described above are not necessarily applied. If the correlation between 

each type of distress and roughness, and the proof that IRI may completely reflect 

pavement deterioration, may be obtained, then it is simple and reasonable to regard 

IRI as pavement performance index without considering other distress types, and to 

represent the change of performance of the pavement life cycle as the change of IRI. 

Moreover, deterioration models of other distress types combining two or more distress 

types that occur simultaneously may also be created by using the constructed 
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deterioration model of IRI. 

 

Types of Distress 

The main objective of pavement management research is to achieve complete 

systematization and automation of pavement management and detection. However, 

even in a developed country, part of the measurement of pavement conditions still 

depends on manual visual inspection, whose data should be integrated and validated 

with data obtained from multi-functional measuring devices. 

To understand the correlation between pavement roughness and all kinds of 

distress, analysis and prediction based on a neural network are performed to examine 

the correlation of pavement roughness and ten types of distresses that commonly 

found in Taiwan, listed as follows: 

1. Rutting 

2. Alligator cracking 

3. Cracking 

4. Digging /patching  (digging for the purpose of installing pipes, wires, etc. and 

subsequent patching) 

5. Potholes 

6. Corrugation 

7. Man-holes 

8. Stripping 

9. Patching 

10. Bleeding 

 

PAVEMENT INSPECTION 

125 road sections with a length of 1 km are used in the collection of data, 

including provincial highways and county roads. All pavement information collection 

is performed by ARAN (Automatic Road Analyzer), an automatic road analyzer 

recommended by The World Bank and Federal Highway Administration (FHWA). 

First, we use ARAN system to automatically obtain the roughness index value and 

rutting depth of each road section by using a laser roughness measuring device and 

supersonic rutting measuring device which are mounted on ARAN. The examination 

and data recording of ten pavement distress types are done manually in the laboratory 

by determining the distress type and counting its corresponding distress amount or 
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extent based on the pavement image obtained from the image retrieval system, which 

is one of ARAN’s subsystems. Roughness data, rutting data, and distress data are 

integrated and outputted by the software package, VIEW 4.55. 

 Generally, pavement condition produces a normal distribution. For example, a 

road section with an IRI of over 6, indicating heavy deterioration, has a lower 

frequency. Similarly, a road section with IRI under 2 also has a lower frequency. Data 

of normal distribution is usually unsuited to neural network analysis. If the road 

measurement is performed using random samplings, only a few of the extremely 

worst or best road sections may be obtained. And thus the results of IRI are difficult to 

analyze and use for predictions. As a result, the apparent ratio of the best and worst 

road sections of the 125 samples is much higher than its actual frequency. For the 

purpose of training the neural network, the data set of 125 records is divided into 2 

sets: 100 records as the training data set and the other 25 records as the testing data 

set. 

 

Roughness Measurement 

The roughness measurement is performed by the Roughness Subsystem of 

ARAN, which consists of a roughness computer, laser SDP software, the 

accelerometer (only one is needed), and the roughness lasers (the laser subsystem is 

similar to the Laser South Dakota Profile (SDP)). This subsystem is an inertia 

measurement device. The sensitivity factor has to be considered in the roughness 

measurement. The sensitivity factor in this research is set to 0.6 m: that is, a 

longitudinal profile less than 0.6 m may be eliminated. This sensitivity factor is 

suitable for the general speed of a motor vehicle. It is recommended that the length of 

a single measured road section is not more than 73 km (45 miles). Additionally, for 

wavelengths filtration, we consider only the wavelength less than 91 m to avoid 

erroneous determinations caused by non-roughness factors. In this research, the 

roughness measurement output is represented as an IRI value. 

 

Rut Depth Calculation 

The rut depth calculation is performed by the Smart Bar subsystem of ARAN, 

which consists of a smart bar computer and ultrasonic software, an ultrasonic 

controller, retractable ultrasonic extension wings, ultrasonic sensors, and ultrasonic 

driver boards. The smart bar computer measures the time between the transmission 
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and the reception of signals for each ultrasonic sensor. Then, it calculates the distance 

to the road based on the speed of the sound and the rut depths for the wheel paths. For 

data collection, 19 ultrasonic sensors are mounted to instrument enclosures, each 

separated by a distance of 10cm. When needed, extension wings are used to add 

length to the smart bar. The right and left extensions combined provide a full lane 

width measurement of 3.7 m. Sensors are accurate to 1 mm.  

 

Pavement Condition Rating 

A high quality video camera is mounted to the underside of the vehicle’s ceiling 

and is aimed through ARAN’s front windshield to record the picture. The pictures are 

recorded by using a video cassette recorder (VCR). The image data details road 

conditions, giving the engineer a secondary visual inspection of the problem surface 

after the condition rating has been completed. The camera takes 30 pictures per 

second, supplying a resolution image. The pavement image contains data such as the 

road section name, the direction, the number of lane, the mileage, the speed, etc. After 

the outdoor picture collection is finished, files are processed by the software package 

VIEW 4.55. Then, the videotape is displayed on video monitors. The operator running 

the rater keyboard bases his judgements on distress types and surface areas shown on 

the videotape output display. Rating results, rutting and IRI values are integrated by 

VIEW 4.55. 

 

Data Processing 

Within a 1-km-road section, for alligator cracking, cracking, digging/patching, 

corrugation, patching, bleeding, and stripping inspections, we observe what 

proportion of the road section contains these distress types by visual ratings based on 

the pavement videotape images We consider 20m as one measurement unit because, 

in general, the unit of partial road works in Taiwan is 20m. For instance, if a 200-m 

digging/patching occurs on a road section with the length of 1 km, then its patching 

value is 10. Potholes are divided into severe potholes and mild potholes, and the 

number of their occurrences within a 1 km segment is recorded. The man-hole is 

categorized into a severe or mild man-hole and the variable recorded is simply the 

number of them. Furthermore, since the 125 samples of data contain provincial 

highways and county roads, one additional attribute, road level, is added into the 

analysis to classify provincial highways and county roads into categories 1 and 2 
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respectively.  

We only consider the surface area of alligator cracking, cracking, 

digging/patching, corrugation, patching, bleeding, and stripping without taking the 

degree into consideration in our neural network analysis since the distress extent or 

amount is measurable, while distress degree is uncertain and easily effected by 

subjective opinions of investigators using visual ratings based on the pavement 

videotape images. However, distress surface areas and distress degree are in fact 

related. In the future, if consistency of investigator’s judgements upon the distress 

degree can be ensured, it will be considered as one of the measurement variables, and 

thus the correlation coefficient of the model can be increased. 

 

NEURAL NETWORK CONSTRUCTION 

 Neural Networks have been widely used in other areas of pavement analysis. [7,8] 

A back-propagation neural network is applied in this research. Parameters of network 

design are shown in table 1. The Input layer has 14 nodes (variables): The road level, 

left rutting, right rutting, alligator cracking, cracking, digging/patching, mild potholes, 

severe potholes, patching, bleeding, corrugation, stripping, mild man-holes and severe 

man-holes are inputted in the above order, as shown in table 2. There are 6 nodes at 

the hidden layer, which is set based on generally accepted knowledge in this field. 

Within a reasonable range, the number of nodes at a hidden layer, about half of the 

total number of nodes at the input and output layers, has only slight effects on the 

training process of the neural network. The output layer has only one node (variable), 

the roughness index. Artificial neural connections of size of 90 (14*6+6*1) are 

constructed using 14 nodes at the input layer, 6 nodes at the hidden layer, and 1 node 

at the output layer, illustrated in figure 1. All included variables are normalized. 

Computation between two nodes of different layers in the neural network is provided 

by four transfer functions as shown below. The most appropriate transfer function is 

selected according to the problem. Since there are 90 connections in our network 

architecture, there exist 490 combinations of transfer functions, so that they can’t be 

executed one by one. Among the four transfer functions we performed, we observed 

that the sigmoid function is optimal. The four transfer functions are as the following: 

Sigmoid    1/[1 + exp(-x)] 

Gaussian    exp(-xxx) 

Hyperbolic tangent  tanh(x) 
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Hyperbolic secant  sech(x) 

 

Training and Testing Neural Network 

There are two main phases in the operation of a neural network: training and 

testing. In the training phase, 100 records of training data are used with 1000, 5000, 

7500, 10000, 12500, 15000, 25000 iterations to let the neural network learn the 

relationship between input variables and output variables. In the testing phase, 25 

records of testing data are used as input for the trained neural network. It was 

discovered from testing results that accuracy of prediction resulting from 10000 

iterations is better than others. Iterations lower than 10000 tend to insufficient train 

the network, while iterations above 10000 show an over-learning tendency, that is, 

neural network will over-memorize the correlation between input and output variables 

and thus lose its flexibility in production analogies and deductions. For over 52% 

(13/25) of testing data, values of IRI predicted by neural network and actual values of 

IRI differ no more than 0.3. Only one record of the 25 records has a prediction value 

that differs from the actual value by more than 1, as shown in Table 3. We conclude 

that the appropriate iteration for this research is about 10000. The correlation 

coefficient and RMS (Root Mean Square) of 100 records of training data input are 

0.84 and 0.068, respectively. The correlation coefficient increases as learning iteration 

increases, as shown in Figure 2. On the other hand, RMS decreases as learning 

iteration increases. When iteration count increases from 10000 to 25000, correlation 

coefficient still increases and RMS still decreases, but this phenomenon simply 

indicates that the neural network remembers competently the correlation between the 

input variables of 100 records of training data and its corresponding output variables. 

It loses its flexibility of analogy and deduction, so that the correlation coefficient from 

25 unknown records of inputted testing data does not increase as the iteration number 

increases. 

25 unique records of testing data were inputted into the neural network after it 

was trained with 100 records training data using 10000 iterations. The prediction 

result is shown in Table 4. The correlation coefficient between 25 testing records of 

input variable and its prediction values reaches 0.944, which is higher than that of 

training data, 0.84. This result indicates that this is a successful network architecture. 

40% of the errors are no larger than 0.2, 72% of the errors are no larger than 0.5, and 

96% no larger than 0.7. 
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Predicted IRI value via neural network learning and training approaches actual 

values, and its correlation coefficient reaches 0.944. Figure 3. illustrates that the 

accuracy of prediction does not centralize at any particular range. Whether for high, 

small or medium IRI value, the neural network has agreement in predictive accuracy. 

 

Weight Effect of Each Distress Types  

The effect of the 14 variables on the IRI is the main concern of our analysis. As 

shown in Figure 4, the greatest contribution is made by the input variable of the eighth 

node, “severe potholes”. In other words, a road section that has a worse IRI is usually 

accompanied by “severe potholes”. From another point of view, the IRI of a road 

section in which “severe potholes”－as measured by the manual visual evaluation 

process－ occur frequently is always high. The decreasing order of percent 

contribution of input variables that succeed “severe potholes” is: left rutting (second 

node), digging road patching (sixth node), and right rutting (third node). There is 

occasional dispute over the issue of the correlation between rutting and pavement 

roughness. We observe from this research that it is clear that a road with considerable 

pavement roughness also has deep rutting. Deterioration of rutting is related to poor 

pavement materials, inappropriate construction, insufficient strength of the base layer, 

an excessive traffic burden as well as other factors. Severe rutting, to some extent, 

indicates the pavement’s poor quality; thus, it is closely related to pavement 

roughness. Among the 14 input variables, those that have only slight effects on 

pavement roughness are: alligator cracking, cracking, mild potholes, and bleeding. 

Pavement roughness is also affected by road level. Pavement roughness of provincial 

highways is less than that of county roads. As described above, any of the distress 

types and pavement roughness have a bi-directional causal relationship.  

Even under the circumstances of it not being feasible to utilize rapid 

measurement equipment to perform pavement inspections, present manual visual 

inspection results may also be used as the input variables of the neural network we 

developed to obtain the determination of its corresponding IRI. The resulted IRI thus 

can be used as a kind of critical index of a pavement development management 

system. Besides, in Taiwan’s domestic pavement management, roughness 

measurement is generally applied to new road construction projects and is used as a 

measure for the acceptability of newly finished roads. Thus, it is clear that IRI can be 
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used to represent a pavement construction project’s quality. Analysis results show that 

IRI can also be used to indicate pavement distresses or deterioration level. 

 

Sensitivity Analysis of Pavement Distress Types 

To learn the effect of partial repairs on pavement roughness, we use a back 

propagation neural network to analyze the variables’ sensitivity. As shown above, the 

optimum result of our neural network model is obtained by training 10000 iterations. 

Thus, we perform the analysis of cracking, bleeding, potholes, stripping, corrugation, 

and man-holes by utilizing our neural network architecture with 10000 iterations. 

Steps of the analysis process: 

1. Sample selection:  

50 records of distressed pavement data, which are not duplicates of the 100 

records of training data, were randomly selected. 

2. The samples were input into the neural network in order to proceed with the 

determination: 

We used the neural network previously constructed and trained. The input 

variables and their order were the same as those described in the previous section, 

and the value of node at the output layer is the IRI. For example, the 50 records 

stated above are inspection data of 50 road sections with 27 road sections 

containing potholes. Thus the 14 variables of the 27 records were used as the input 

to the back-propagation neural network to predict the corresponding IRI. 

3. A simulated prediction of non-distressed pavement was performed: 

To simulate the IRI of non-potholed pavement or pavement after repair 

(assuming that the quality of repair reaches the non-potholed condition) under the 

same circumstances as the simulated environment of the 27 records mentioned 

above, we set the value of the pothole variable to 0, while the value of the other 13 

input variables remained the same. 

4. A correlation between repair surface area/number and ∆IRI was obtained: 

To evaluate the effect of potholes number on IRI, we subtract the IRI value 

obtained in step 2 with the IRI value obtained in step 3. Next, we performed a 

regression analysis of the resulting difference value (∆IRI) and number of repaired 

potholes to construct the correlation between the pothole repair number and ∆IRI. 

5. Other distress types were analyzed: 
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For cracking, bleeding, stripping, corrugation, man-holes, we did the same as 

described in step 1 through step 4. 

 

The analysis results, as shown in Figure 5, show that prediction results approach 

the corresponding actual value. We observe that predicted value of non-distress input 

is smaller than its original prediction value. Potholes, man-holes, and stripping have 

higher sensitivity in accordance to IRI, while cracking, bleeding, corrugation have 

less. The result shown in Figure 4 confirms this conclusion.  

When rutting, cracking, bleeding, potholes, man-holes, stripping, corrugation, or 

any distress types occur, partial reparation is a generally accepted solution. Yet, since 

repairs of different distress types of various surface areas have different effects on 

pavement, it is difficult for a maintenance management system to evaluate precisely 

the degree of improvement and the benefits of partial repair tasks. Simulation of these 

situations may solve this problem. 

 For example, assume there are ten locations with stripping within a 1-km road 

section (one stripping location is 20m; stripping less than 20m is also assumed as one 

stripping location). The 14 variables (the value of the one representing stripping is 10) 

of the road section are inputted into the neural network to proceed with prediction, 

then, a predicted IRI whose value approximates its actual measurement value is 

obtained. After that, the input variable that represents the stripping value is set to 0 to 

simulate the IRI value of non-stripping pavement, or repaired pavement that was 

originally stripped (assuming that the quality of reparation reaches the non-stripping 

condition). The regression models of reparation extent of the each distress type and 

IRI improvement values are shown in Figure 6. Except for corrugation, which shows 

an exponential regression model, the other regression models are linear. The 

non-increasing order of R2 is caused by man-holes (0.95), cracking (0.93), and 

stripping (0.77). The R2 values of bleeding, potholes, and corrugations are between 

0.5 and 0.6, indicating that explanatory variance is insufficient and that some other 

causal factors need to be examined further. However, it is still statistically meaningful 

for us to evaluate the repair extent and the IRI improvement value. 
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CONCLUSIONS 

In this research, artificial neural networks are employed in pavement roughness 

analysis. The three-layer back-propagation neural network proposed in this paper has 

strong prediction and analysis capability. Furthermore, the correlation coefficient of 

unknown samples examination is much higher than that of training samples, showing 

that it is a successful network architecture. 

Pavement deterioration from time to time is characterized by distresses such as 

rutting, cracking, stripping, corrugation, potholes, man-holes, etc. The back 

propagation neural network is applied in this research to analyze the correlation 

between pavement distresses and IRI. The results of the analysis prove that IRI can be 

used either to evaluate the quality of pavement projects or to fully respond to the 

characteristics of the pavement deterioration process, which can be used as the basis 

for road maintenance ranling evaluation. In other words, rapid measurement of IRI 

using the Automatic Road Analyzer (ARAN) can simplify the works of traditional 

road-inspector visual inspection or miscellaneous manual rating works in the 

laboratory according to pavement images acquired by the image retrieval system. 

Based on the back-propagation neural network proposed in this paper, approximation 

of IRI may be obtained successfully by utilizing ratings obtained from pavement 

distress images and road level. Even though automatic IRI measuring devices are not 

common in Taiwan’s basic road institutions, distress types and their extent or number 

within a 1-km road section obtained by present visual evaluation processes can also 

be used to determine IRI, and evaluation and planning may subsequently proceed 

based on it. 

IT was found that severe potholes, Digging/patching, and rutting have the highest 

correlation to IRI. Man-holes, stripping, and corrugation have less correlation. 

Cracking, alligator cracking, bleeding, and road level are the least related to IRI. 

IT was concluded that the sensitivity simulation analysis result based on the 

trained back-propagation neural network infers improvement in the IRI value of 

pavement after certain extent or amount of repair for each distress type. 
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TABLE 1 Parameter Construction of Back-Propagation Neural Network 

Parameter value 

Number of network layers 3 

Number of nodes at input layer 14 

Number of nodes at hidden layer 6 

Number of nodes at hidden layer 1 

Transfer function Sigmoid 

Number of connections 90 

Training data 100 

Testing data 25 

Learning iteration 1000, 5000, 7500, 10000, 

12500, 15000, 25000 

Learning rate 0.01 

 

 

TABLE 2 Fourteen Categories of Neural Network Input Variables 

Node Input Variable 

1 The road level 

2 left rutting 

3 right rutting 

4 alligator cracking 

5 cracking 

6 digging/patching 

7 mild potholes 

8 severe potholes 

9 patching 

10 bleeding 

11 corrugation 

12 stripping 

13 mild man-holes 

14 severe man-holes 
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TABLE 3 Testing Results of Various Training Iterations  

  

 
5000 10000 15000 

Within 0.2 8/25 10/25 9/25 
Within 0.3 13/25 13/25 13/25 
Within 0.5 17/25 18/25 17/25 
Within 0.7 23/25 23/25 19/25 
Within 1 24/25 24/25 20/25 

 

TABLE 4 Actual Value and Prediction Value of 25 Records Testing Data 

Record Actual value of IRI Value of IRI predicted 
by neural network 

1 2.97000 3.04177 
2 2.78000 3.21953 
3 2.76000 2.56387 
4 3.34000 3.31494 
5 3.15000 3.76363 
6 4.07000 3.61808 
7 2.86000 2.99967 
8 5.18000 5.69365 
9 4.87000 4.31010 
10 3.07000 3.02100 
11 5.69000 5.15410 
12 3.92000 4.37860 
13 7.28000 7.30150 
14 4.08000 3.95959 
15 3.44000 2.90473 
16 2.76000 2.54302 
17 3.58000 3.86048 
18 4.15000 3.80594 
19 6.40000 6.26429 
20 4.91000 4.15301 
21 2.34000 2.42122 
22 3.12000 2.91801 
23 6.34000 5.89703 
24 5.68000 7.01909 
25 4.76000 4.60546 

 

Iteration 
Number Error 
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FIGURE 1 Back-Propagation Neural Network Architecture 

 

 

 

 
FIGURE 2 Correlation Between Correlation Coefficient and Training Iterations  
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FIGURE 3 Relationship between Target Value (Actual Value of IRI) and 

Prediction Value (Value of IRI Predicted by Neural Network) 
 

 

FIGURE 4 Weight of Input Variable 
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 FIGURE 5 IRI Prediction Value of Non-Distress Condition ( Pothole Case) 
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(a) Cracking Case 
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(b) Bleeding Case 
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(c) Pothole Case 
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(d) Stripping Csse 
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(e)Corrugation Csse 
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(f) Man-Hole Csse 

FIGURE 6 Correlation between Repair Extent and IRI Improvement 

TRB 2003 Annual Meeting CD-ROM    Paper revised from original submittal.


